Electronics alternatives for NEXT100+

28 May 2013

Paul Rubinov

Goal: Propose ideas that

- Can keep a level of involvement with little \$
 - Something can be done for a ~\$20k
- Are a strength for Fermilab
 - Direct experience, good eng resources
- Help NEXT
 - Or at least don't interfere!

SiPMs Tracking plane

Tracking Plane and Feedthrough Tracking plane, Vertical Section **NEXT-100 Mechanical Overview** D. Shuman (LBNL, IFIC) December 3, 2012 38 / 3

Is this area filled with HP Xe?
Does it need to be?

SiPM signal feedthrough

3 "features"

- Move active electronics forward
 - Separate "pressure barrier" from "Xe barrier"?
- Reduce number of conductors in the feedthrough
 - Multiplexing without switches?
- Make the feedthrough simpler
 - Can you have connectors that connect from a distance?

Reducing conductors: mux

- There are many reasons not to mux inside the detector:
 - Complexity
 - Reliability
 - Power
 - Noise

- One reason to multiplex:
 - feedthrough

The point

Interesting specs

- Mux by 2:1 or 8:1 or 16:1
- Rise time adjustable from 35ns to 78ons
- Fall time adjustable from 20us to ~0.5us
- Power is ~3 to 5 mW/ch (adj bias current)
- Noise is < 200e equivalent @ 10pF</p>
 - too good, too much gain (lowest is 22mv/fc)
 - Could easily be 200 times worse and be ok!

Circuit description

Figure 2 is a more detailed depiction of the internals of the final readout chip.

Figure 2. NOvA readout chip

No such thing as a free lunch: Using the NOVA ASIC for NEXT

- Would need to be tweaked for lower gain
 - So there would be some engineering
- Could be made to work with NO or LITTLE external bypass capacitance
 - Definitely needs some engineering by designer

A large fraction of the area is "fill"

FAQ: using the NOvA ASIC

Q: Is it expensive? A: ~\$30k for 2x

MOSIS QUOTATION

To: deptuch FNAL

, IL 60510

deptuch@fnal.gov

Quote ID: 171573-A

Date: 23-APR-2013

Expires: 23-MAY-2013

Payment Terms: See below

MOSIS Account: 573-COM-RLAB/FERMI

Issue Purchase Order to: University of Southern California

Tax ID: 95-1642394

Item	QTY Unit	Part No	Description	Unit Price	Extended Price
1	1 LOT	12400	Lot of 40 TSMC 0.25 um Mixed-mode MS G ICs (minimum 25mm^2) Price based on area of 6 mm^2.	14,000	14,000
2	5 LOT	12403	Additional lot of 40 TSMC 0.25 um Mixed-mode MS G ICs (minimum 25mm^2)	1,500	7,500
					21,500

These prices include Federal Express 2 day shipping; delivery is best effort.

Terms and conditions are defined in the customer agreement signed by your organization on 28-MAR-1990.

FAQ: using the NOvA ASIC

Q: Is it reliable? A: 0.25um TSMC is very reliable, mature, stable and popular. Typical yields are in the mid 90s

NOvA ASIC is a fairly simple chip- analog mux Use 2x number of chips needed

Idea would be to capacitively split the signal to two chipspower one or the other

Other ideas

- The NOvA chip is a type of Time Division Multiplexing
- It is also possible to utilize Frequency Division Multiplexing

 Basic idea: use a low voltage tuning diode to "tune" a VCO based on the output of the amplified SiPM signal

Freq Div continued

Advantages:

few components, cheap low power (5mW/ch added) simple

Disadvantages:

very limited dynamic range need good cables somewhat limited multiplexing (16:1) limited time response (>1us)

More other ideas

- Remote connectors?
 - Dzero tracker had a similar problem- must make connections (>100k in all) where there was no space for hands:
- Solution: cin:apse connectors from Cinch

CIN: APSE

- Can be very dense: ~100 contacts/sq cm
- Just squeeze between two PCBs (5g/contact) (can be FPC, with rigid backing)

The basic CIN::APSE contact configuration consists of a contact installed into a customized plastic insulator with the patented Cinch hourglass hole design (Figure 2). Once in place, the contact extends on both sides of the insulator.

Quick, Solderless Installation

CIN::APSE is easily installed in two basic steps, without soldering. First, using alignment features, the CIN::APSE interconnect is positioned between two components with matching connection footprints. Next, the two components are compressed and fastened together (Figure 3).

Conclusions

- We want to be involved in NEXT (because Adam said so)
- We have little support, but I would like to offer some ideas that
 - Are in line with Fermilab expertise
 - Don't require huge resources
 - Don't interfere with NEXT progress